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We consider a weakly nonlinear van der Pol oscillator subjected to a periodic force and delayed feedback
control. Without control, the oscillator can be synchronized by the periodic force only in a certain domain of
parameters. However, outside of this domain the system possesses unstable periodic orbits that can be stabi-
lized by delayed feedback perturbation. The feedback perturbation vanishes if the stabilization is successful
and thus the domain of synchronization can be extended with only small control force. We take advantage of
the fact that the system is close to a Hopf bifurcation and derive a simplified averaged equation which we are
able to treat analytically even in the presence of the delayed feedback. As a result we obtain simple analytical
expressions defining the domain of synchronization of the controlled system as well as an optimal value of the
control gain. The analytical theory is supported by numerical simulations of the original delay-differential
equations.
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I. INTRODUCTION

Although the delayed feedback control �DFC� method has
been introduced more than one decade ago �1� it is still one
of the most active fields in applied nonlinear science �2,3�.
The method allows a noninvasive stabilization of unstable
periodic orbits �UPO’s� of dynamical systems in the sense
that the control force vanishes when the target state is
reached. The DFC is reference-free; it makes use of a control
signal obtained from the difference between the current state
of the system and the state of the system delayed by one
period of the unstable orbit. Such a scheme is especially
superior for fast dynamical systems, since it does not require
any real-time computer processing. Successful implementa-
tion of this algorithm has been attained in diverse experimen-
tal systems, including electronic chaotic oscillators �4�, me-
chanical pendulums �5�, lasers �6�, gas discharge systems �7�,
a current-driven ion acoustic instability �8�, a chaotic Taylor-
Couette flow �9�, chemical systems �10�, high-power ferro-
magnetic resonance �11�, helicopter rotor blades �12�, and a
cardiac system �13�.

Several variants of the original delayed feedback scheme
have been proposed to improve the control performance.
Among those are extended DFC �EDFC� schemes employing
multiple delays to stabilize strongly unstable orbits �14,15�
or unstable DFC �UDFC� schemes using an unstable degree
of freedom in a feedback loop �16,17� to overcome the so-
called odd number limitation from which usual delayed feed-
back control suffers �18�.

Most investigations in the theory of delayed feedback
control are devoted to the stabilization of unstable periodic
orbits embedded in chaotic attractors of low-dimensional
�usually three-dimensional� systems. The leading Floquet
multipliers of such orbits are real-valued and lay outside the
unit circle in the complex plane �Figs. 1�a� and 1�b��. The
orbits with the negative real multiplier arise from a period-

doubling bifurcation and are typical, for example, for the
Rössler system or periodically driven Duffing oscillator. The
mechanism of stabilization of such orbits by delayed feed-
back is well understood �19,20�. The orbits with the positive
real multiplier come from a tangent bifurcation and are typi-
cal, for example, for the Lorenz system. They satisfy the odd
number limitation and cannot be stabilized by the usual de-
layed feedback method. The mechanism of stabilization of
such orbits by the UDFC is described in Ref. �16�. Recently
we have developed an analytical approach for the UDFC
method when the system is close to a subcritical Hopf bifur-
cation �17�.

In addition to the above mentioned orbits there exists a
large class of unstable periodic orbits with the complex con-
jugate pair of leading Floquet multipliers �Fig. 1�c��. Such
orbits arise from a Nejmark-Sacker �discrete Hopf� bifurca-
tion and cannot appear in low-dimensional chaotic attractors.
Presumably for this reason they have not been considered in
delayed feedback control theory so far. However, such orbits
may appear in low-dimensional nonchaotic systems. The in-
tent of this paper is to consider the control of such orbits.
Note that all three types of orbits have different topological
properties. The orbits with the negative real multiplier flip
their neighborhood during one turn. The orbits with the posi-
tive real multiplier have no torsion, and finally the orbits
with the complex conjugate pair of the multipliers have a
finite torsion.

In this paper, we consider the problem of controlling syn-
chronization in a forced self-sustained oscillator. Very often
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FIG. 1. Leading Floquet multipliers of unstable periodic orbits
arising from different bifurcations: �a� period doubling, �b� tangent,
and �c� Nejmark-Sacker �discrete Hopf� bifurcations. The unit circle
defines the region of stability.
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in practical application the need arises to control the proper-
ties of oscillations. Usually control assumes an enhancement
in regularity of motion. Suppose that our aim is to maintain
the synchronous regime of a periodically driven self-
sustained oscillator. Due to drift of parameters the desired
synchronization may be lost and a kind of beat phenomenon
may occur. We imagine that the external force driving the
oscillator is inaccessible in experiment, but we can measure
an output of the oscillator and can control its state through
some accessible input. Then applying the delayed feedback
control we can return the system to the synchronized state. In
this paper, we demonstrate these ideas for the van der Pol
oscillator.

The rest of the paper is organized as follows. In Sec. II,
we derive averaged equations for the controlled van der Pol
oscillator and analyze unstable periodic orbits of the uncon-
trolled system. In Sec. III, we investigate a linear stability of
the unstable periodic orbits controlled by delayed feedback.
Section IV is devoted to the extended delayed feedback con-
troller. In Sec. V, we demonstrate the results of numerical
simulations of the original delay-differential equations. The
paper is finished with conclusions presented in Sec. VI.

II. AVERAGED EQUATION AND UNSTABLE ORBITS
OF UNCONTROLLED SYSTEM

A. Problem formulation and averaged equation

Consider a weakly nonlinear van der Pol oscillator under
action of external periodic force and delayed feedback per-
turbation

ẍ + �0
2x + ��x2 − 1�ẋ = a sin��t� + k�x − xT� . �1�

The left-hand side represents the standard van der Pol equa-
tion. The parameter �0 is the characteristic frequency of self-
sustained oscillations, and � is responsible for the strength of
nonlinearity of the oscillator. The first term in the right-hand
side is an external periodic force �a is the amplitude and � is
the frequency� and the second term describes the delayed
coupling due to control. The parameter k is the feedback
gain, xT�x�t−T�, and T=2� /� is the period of the external
force. In the following we consider Eq. �1� as a weakly non-
linear system. Specifically, we suppose that � is a small pa-
rameter, ���0. Moreover we assume that the amplitude a,
the frequency detuning �−�0 as well as the control pertur-
bation k�x−xT� are proportional to the small parameter �.

For weakly nonlinear systems, there are many mathemati-
cally rigorous ways �e.g., method of averaging, multiscale
expansion, and other asymptotic methods� to obtain approxi-
mate solutions. We will apply the method of averaging. First
we rewrite Eq. �1� as a system

ẋ = y , �2a�

ẏ = − �0
2x − ��x2 − 1�y + a sin��t� + k�x − xT� . �2b�

As Eq. �1� or system �2� is close to that of linear oscillator,
we can expect that the solution has a nearly harmonic form.
Since there is a forced system we look for a solution with the
characteristic frequency �

x = �A�t�ei�t + A*�t�e−i�t�/2. �3�

Here A�t� is a new variable, a slowly varying complex am-
plitude. Since it is complex, we need two relations to have
one-to-one correspondence between �x ,y� and A. It is conve-
nient to introduce the following relation between y and A:

y = i��A�t�ei�t − A*�t�e−i�t�/2. �4�

Substituting Eqs. �3� and �4� in system �2� we obtain the
equation for the complex amplitude, which after averaging
over the period T of fast oscillations takes the form

Ȧ =
�2 − �0

2

2i�
A −

�

2
A� �A�2

4
− 1� −

a

2�
+

k

2i�
�A − AT� . �5�

By choosing an appropriate scale for the amplitude

A = 2z �6�

and introducing new parameters

� =
a

2��
, � =

�2 − �0
2

��
	 2

� − �0

�
, � =

k

��
�7�

Eq. �5� can be simplified to

�2/��ż = − i�z − z��z�2 − 1� − � − i��z − zT� . �8�

The parameters �, �, and � are proportional respectively to
the amplitude of external force, the frequency detuning, and
the delayed feedback gain.

B. Periodic orbits of the system

We now determine the steady state solutions of the uncon-
trolled system ��=0� and analyze their stability. A similar
analysis is presented in many textbooks, however most atten-
tion is usually concentrated on the stable solutions describing
the synchronized states. In our consideration we focus on
unstable periodic orbits. In the following sections they will
be the subject of the delayed feedback control.

The �approximate� bifurcation diagram of Eq. �8� for �
=0 is shown in Fig. 2. Since it is symmetrical with respect to
the � and � axis, only the part ��0, ��0 is presented. We
start the analysis with finding the stationary solutions. Set-
ting ż=0 and z=z0, we obtain

− i�z0 − z0��z0�2 − 1� − � = 0. �9�

We introduce the notations

s = �z0�2, f��s� = s��s − 1�2 + �2� . �10�

Then the values of s can be found by solving the cubic equa-
tion

f��s� = �2 �11�

with respect to s. Knowing s, from Eq. �9� one can determine
the steady state value of z,

z0 = − �/�s − 1 + i�� . �12�

Solutions of the cubic Eq. �11� define stationary periodic
orbits of the forced system. The period of these orbits coin-
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cides with the period T of the external force, and the ampli-
tude �the radius in the �x ,y� plane� is

�A0� = 2�z0� = 2
s . �13�

Equation �11� has three real roots provided

�1
2��� 	 �2 	 �2

2��� , �14a�

�1,2
2 ��� =

2

27
�9�2 + 1 
 �1 − 3�2�3/2� �14b�

or one real root otherwise. Thus the forced van der Pol os-
cillator has either three or one periodic orbit�s�. The region
with three orbits is between broken lines in Fig. 2. Outside
this region there is only one periodic orbit.

From a physical point of view it is interesting to investi-
gate the bifurcations for two different cases, namely �i� for a
fixed detuning � and variable amplitude of external force �,
or �ii� for a fixed � and variable �. For the first case, the thin
vertical lines divide the bifurcation diagram into three re-
gions ��a�, �b�, and �c�� with different behavior. The �A0� vs �
characteristics in these three regions are, respectively, shown
in Figs. 3�a�–3�c�. Similarly, for the second case the bifurca-
tion diagram is divided into three regions ��e�, �f�, and �g��
by horizontal lines for which the �A0� vs � characteristics are
respectively presented in Figs. 3�e�–3�g�. Typical evolution

of the periodic orbits in the �x ,y� plane is shown in Fig. 4.
To determine the stability of periodic orbits, we have to

linearize Eq. �8�, which leads to the characteristic equation

�2�

�
�2

− 2�1 − 2s�
2�

�
+ f���s� = 0. �15�

Here � is the Floquet exponent �FE� of the periodic orbit, s is
the solution of the cubic equation �11�, and

f���s� = �3s − 1��s − 1� + �2 �16�

is the derivative of the function f��s� defined in Eq. �10�. The
stability of a periodic orbit depends on the value of s or, due
to the relation �13� �A0�=2
s, on the amplitude of the orbit.

Two different types of bifurcations may occur in the sys-
tem. For f���s�=0 we have a tangent �saddle-node� bifurca-
tion, and for s=1/2 a Hopf bifurcation arises. The condition
f���s�=0 defines the boundaries �2=�1,2

2 ��� of the region with
three periodic orbits in the �� ,�� plane �broken lines in Fig.
2�. When crossing into this region two additional orbits of
saddle and node types occur. The saddle orbit has two real
FE’s of different signs. The positive exponent ��0 corre-
sponds to the real positive Floquet multiplier 
=e�T�1 and
thus this orbit satisfies the odd number property. Such an

FIG. 2. The bifurcation diagram for the uncontrolled van der Pol
oscillator. The broken lines are defined by Eq. �14b�. The region
between these lines correspondsto three periodic orbits. Outside this
region there is only one periodic orbit. The thick solid line is the
hyperbola �17� defining the Hopf bifurcation. The vertical lines di-
vide the diagram into three regions: �a� �2	1/4, �b� 1/4	�2

	1/3, and �c� 1/3	�2. By horizontal lines the diagram is divided
into regions �d� �2	4/27, �e� 4/27	�2	8/27, and �f� 8/27
	�2. The vertical �horizontal� arrows show the fixed values of the
parameter � ��� taken from regions �a�, �b�, and �c� ��d�, �e�, and
�f�� for which the �A0� vs � ��A0� vs �� characteristics are presented
in Figs. 3�a�–3�c� and �Figs. 3�d�–3�f��, respectively. The solid dot
�� ,��= �0.9,0.6� and square �� ,��= �0.25,0.3� show the sets of pa-
rameters which will be used in the following analysis to demon-
strate the delayed feedback control performance.

FIG. 3. The amplitude �A0� of the periodic orbit as function of
the amplitude � of the external force for the fixed value of the
detuning �a� �=0.25, �b� �=0.53, �c� �=0.9, and as function of the
detuning � for the fixed value of the amplitude of the external force
�d� �=0.3, �e� �=0.46, �f� �=0.6. Solid lines denote the stable
orbits, open circles represent the saddle orbits, and dashed lines
show unstable periodic orbits with a pair of complex conjugate
Floquet exponents. Solid dots and squares mark the same set of the
parameters �� ,�� as in Fig. 2.
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orbit cannot be stabilized by the usual delayed feedback
method and we do not consider its control in this paper. The
saddle orbits are marked by open circles in Figs. 3 and 4.

The condition of the Hopf bifurcation s=1/2 defines the
minimal amplitude of the stable orbit Amin=
2. The orbits
with amplitude �A0�	Amin are unstable. In the �� ,�� plane,
this condition defines the hyperbola

�2 = f��1/2� = �2/2 + 1/8, �17�

which is shown by a solid line in Fig. 2. Above this line the
oscillator is synchronized with the external force; the phase
of the oscillator is locked by the phase of the external force
and its amplitude is independent of time. Below this line, in
the region of a single solution, the stability of the periodic
orbit with the frequency � is lost and we usually have a
quasiperiodic behavior. The orbits losing their stability
through the Hopf bifurcation �scenario �d�→ �e� in Fig. 4�
have a pair of complex conjugate exponents with the positive
real part. Similar properties have one of the orbits arising
from the saddle-node bifurcation �scenario �a�→ �b�→ �c� in
Fig. 4�. Unstable orbits having a pair of complex conjugate
exponents with the positive real part are marked by dashed
lines in Figs. 3 and 4. In the next section we analyze their
stability under action of the delayed feedback control.

III. LINEAR STABILITY OF THE SYSTEM CONTROLLED
BY DELAYED FEEDBACK

We now analyze Eq. �8� for ��0. The term ��z−zT� does
not change the steady state solutions of this equation, but can
change their stability. Thus the delayed feedback can nonin-
vasively influence the frequency entrainment condition. The
characteristic equation now reads

�2�

�
�2

− 2�1 − 2s�
2�

�
+ �3s − 1��s − 1� + �� + ��1 − e−�T��2

= 0. �18�

In a general way, this is a rather complex transcendental

equation that has an infinite number of solutions. However,
we can expect that close to the Hopf bifurcation the leading
Floquet exponents will be proportional to the small param-
eter �. This assumption allows the approximation e−�T	1
−�T, which simplifies Eq. �18�,

�1 + K2��2�

�
�2

− 2�1 − 2s − �K�
2�

�
+ f���s� = 0. �19�

Here we use the notation

K = �T�/2 = k�/�2. �20�

This approximation is equivalent to that of replacing the de-
lay term in Eq. �8� by the first derivative, zT=z�t−T�	z�t�
−Tż. Such an approximation transforms the delay-
differential equation �8� to the ordinary

�2/� + i�T�ż = − i�z − z��z�2 − 1� − � . �21�

After linearization it yields Eq. �19�.
From Eq. �19� we see that the delayed feedback changes

the condition of the Hopf bifurcation, 1−2s−�K=0, which
now depends on the delayed feedback strength K. At the
bifurcation point we have s= �1−�K� /2. Substituting this in
Eq. �11� and using Eq. �10� we obtain the relation between K,
�, and �,

�2 = 1
8 �1 − �K���1 + �K�2 + 4�2� . �22�

In Fig. 5, these relations are presented by curves in the �� ,��
plane for different fixed values of K. These curves define the
boundaries of synchronization for the controlled oscillator.
Above these curves the oscillator is synchronized with the
periodic force. We see that the delayed feedback perturbation
extends the phase locked domain in the Arnold tongue.

FIG. 4. Typical evolution of periodic orbits in the �x ,y� plane.
As well as in Fig. 3 solid lines, open circles, and dashed lines show,
respectively, stable, saddle-type, and unstable �with a pair of com-
plex conjugate FE’s� orbits. The scenario �a�→ �b�→ �c� is typical
when passing the region with three solutions �see Figs. 3�a� and
3�e��. After two saddle-node bifurcations the stable orbit is replaced
by an unstable one. The scenario �d�→ �e� represents the Hopf bi-
furcation �see Figs. 3�c� and 3�f��.

FIG. 5. The bifurcation diagram for van der Pol oscillator con-
trolled by delayed feedback. The solid line defines the Hopf bifur-
cation for the uncontrolled system �the same as in Fig. 2�, and
broken lines are defined by Eq. �22�. Above these lines the oscilla-
tor is synchronized with the external force.
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For a fixed value of the parameters �� ,��, the threshold of
the feedback strength at which the Hopf bifurcation occurs is
K0= �1−2s� /�, where s satisfy the cubic equation �11�. Em-
ploying Eq. �20� and relation s= �A0�2 /4 the threshold can be
presented in the form

k0 =
�2

�
K0 =

�2

��
�1 −

�A0�2

2
� . �23�

To demonstrate how the Floquet exponents depend on the
control gain k we specify the parameters �� ,�� to be �0.9,
0.6�. This set of parameters is marked by solid dots in Figs.
2, 3, and 5. We have calculated the leading Floquet expo-
nents of the initially unstable orbit using three different
methods, namely, �i� solving transcendental equation �18�,
�ii� using quadratic equation �19�, and �iii� solving exact
�nonaveraged� linearized system �2�. Equation �18� has been
solved by the Newton-Raphson algorithm. The third method
is based on the numerical analysis of the variational equa-
tions

�ẋ = �y , �24a�

�ẏ = − ��0
2 − 2�x0y0��x − ��x0

2 − 1��y + k��x − �xT� .

�24b�

derived from the system �2�. Here �x=x−x0�t�, �y=y−y0�t�
are small deviations from the unstable periodic orbit
�x0�t� ,y0�t��= �x0�t+T� ,y0�t+T�� that satisfies the uncon-
trolled system �2�. The leading Lyapunov exponents of this
system have been calculated according to the algorithm de-
scribed in Ref. 15. Note that the Lyapunov exponent of a
periodic orbit coincides with the real part of the Floquet
exponent.

The results of the above analysis for two different values
of the parameter � equal to 0.01 and 0.1 are presented in Fig.
6. The exact values of the leading FE’s determined from Eq.
�24� are shown by dots. There are two branches �the left-
hand and the right-hand� defining the interval of stability
k0	k	k1 in which the real part of the leading FE is nega-
tive. The parameters k0 and k1 denote the lower and upper
control thresholds, respectively.

First we discuss the results for the left-hand branch. For
�=0.01, all three above methods give quantitatively coincid-
ing results �Fig. 6�a��. Thus for small � the leading FE of the
left-hand branch can be reliably obtained from the simple
quadratic equation �19�, which yields

Re � =
�

2

1 − �A0�2/2 − �k�/�2

1 + �k�/�2�2 , �25�

and the threshold k0 of the Hopf bifurcation is well described
by Eq. �23�. The transcendental equation �18� gives good
results even for �=0.1, while Eqs. �19� or �25� are less ap-
propriate �Fig. 6�c��.

The right-hand branch of the FE defining the upper
threshold k1 cannot be quantitatively well described by Eq.
�18�. This is because the term k�x−xT� responsible for the
control in the system �2� is not small in this case, and the
averaging procedure performed with this system is not valid.

Nevertheless, we can find an approximate analytical expres-
sion for the FE using exact �nonaveraged� variational equa-
tions �24�. For the right-hand branch, the nonlinear terms in
Eq. �18� are small in comparison with the control term. Thus
in the variational equations we can neglect the terms contain-
ing �. Setting �=0 in Eq. �24� we obtain the characteristic
equation

�2 + �0
2 − k�1 − e−�T� = 0. �26�

Root loci diagram of the relevant branch for this equation
when varying k is shown in Fig. 7�a�. The pair of complex
conjugate roots intersects the imaginary axes at the points
�= ± i� /T= ± i� /2. This intersection appears for k=k1,
where

k1 =
1

2
��0

2 −
�2

4
� . �27�

defines the upper threshold of stability. For k=k1, the orbit
loses stability by a period doubling bifurcation since the in-

FIG. 6. Leading Floquet exponents as functions of the control
gain for �� ,��= �0.9,0.6�. Here and in all numerical demonstrations
below we take �0=1. By this is meant that �, �, and � are mea-
sured in units of �0, time t is measured in units of �0

−1, and k is
measured in units of �0

2. �a� Re � vs k for �=0.01. For the given
values of parameters �, �, and �, we have �	1.00451 and a
	0.01205. The amplitude of the unstable orbit is �A0�	1.034 and
its FE’s for k=0 are �0	�2.327±4.297i��10−3. Solid dots are the
values of the Lyapunov exponents obtained from exact variational
equations �24�. The dashed and dotted lines calculated, respectively,
from Eq. �18� and Eq. �19� �or Eq. �25�� approximate to the left-
hand branch. The solid line calculated from Eq. �28� approximates
the right-hand branch. �b� Root loci of Eq. �18� �dotted line� and Eq.
�19� �dashed line� as k varies from 0 to � for the same parameter
value as in �a�. Crosses and black dot denote the location of the
roots for k=0 and k=�, respectively. �c� and �d� Same diagrams as
in �a� and �b� but for �=0.1. The parameters now are �	1.04601,
a	0.12552, �A0�	1.034, and �0	�2.327±4.297i��10−2.

DELAYED FEEDBACK CONTROL OF FORCED SELF-… PHYSICAL REVIEW E 72, 026203 �2005�

026203-5



tersection of the imaginary axes appears at a half frequency
of the external force, �= ± i� /2. Expanding the solution of
Eq. �26� in Taylor series close to the threshold k=k1, we
obtain an approximate analytical expression

Re � =
4�k1/�

�2 + �2�k1/��2 �k − k1� �28�

that describes well the Re � vs k dependence for the right-
hand branch �Figs. 6�a� and 6�c��.

Having analytical expressions for the left-hand �Eq. �25��
and right-hand �Eq. �28�� branches one can easily evaluate an
optimal value kop of the control gain that provides the mini-
mal Re � and thus the fastest convergence to the desired
orbit. This value is defined by a simple intersection of these
two branches and can be found from a cubic equation with
respect to k, which results from equating Eqs. �25� and �28�.

IV. CONTROL VIA EXTENDED DELAYED
FEEDBACK

In this section, we consider a more general �extended�
version of the delayed feedback control, the EDFC, that em-
ploys multiple delays �14�. An application of the EDFC to
the van der Pol oscillator consists in replacing the delay term
xT in Eq. �1� or system �2� by an infinite sum over past states,
namely

xT ⇒ �1 − R��T
x , �29a�

�T
x � �x�t − T� = �

n=1

�

Rn−1x�t − nT� . �29b�

The sum �T
x represents a geometric series with the parameter

�R�	1 that determines the relative importance of past states.
The EDFC control force k�x− �1−R��T

x� vanishes if an UPO
with the period T is stabilized, as it is for the DFC. For R
=0, we have �T

x =x�t−T�=xT and the EDFC transforms to the
original DFC. The extended method is superior to the origi-
nal in that it can stabilize strongly unstable orbits. In experi-
ment, the infinite sum in Eq. �29� can be generated by a
Fabry-Perot interferometer using only single time-delay ele-
ment in the feedback loop �14�. When performing numerical
simulations with the EDFC it is convenient to present the
infinite sum �29b� by an equivalent difference equation

�x�t� = x�t� + R�x�t − T� . �30�

In the case of the EDFC, the averaged equation �8� for the
complex amplitude takes the form

�2/��ż = − i�z − z��z�2 − 1� − � − i��z − �1 − R��T
z � ,

�31a�

�z�t� = z�t� + R�z�t − T� . �31b�

Linearization of the system �31� around a periodic orbit
yields the characteristic equation

�2�

�
�2

− 2�1 − 2s�
2�

�
+ �3s − 1��s − 1� + �� + �

1 − e−�T

1 − e−�TR

2

= 0. �32�

Formally this equation can be derived from Eq. �18� by the
following replacement of the control term

�1 − e−�T� ⇒ �1 − e−�T�/�1 − e−�TR� . �33�

Using an approximation e−�T	1−�T the transcendental
equation �32� can be transformed to the quadratic equation
�19� with the renormalized value of the parameter K, which
now is

K = �T�/2�1 − R� = k�/�2�1 − R� . �34�

As a result the threshold of the Hopf bifurcation becomes

k0 = �1 − R�
�2

��
�1 −

�A0�2

2
� . �35�

Thus the increase of R causes the decrease of the lower
threshold of stability proportionally to the multiplier �1−R�
�cf. Eqs. �35� and �23��.

The left-hand branch of FE is obtained from Eq. �25� by
replacing k with k�1−R�

Re � =
�

2

1 − �A0�2/2 − �k�1 − R��/�2

1 + �k�1 − R��/�2�2 . �36�

The equation for the right-hand branch of FE can be derived
from Eq. �26� by using the replacement �33�

�2 + �0
2 − k�1 − e−�T�/�1 − e−�TR� = 0. �37�

Root loci diagram of this equation is shown in Fig. 7�b�.
Again the pair of complex conjugate roots intersects the
imaginary axes at the points �= ± i� /T= ± i� /2. The inter-
section appears for k=k1, where

k1 = �1 + R�
1

2
��0

2 −
�2

4
� �38�

defines the upper threshold of stability for the EDFC. The
increase of R causes the increase of the upper threshold pro-
portionally to the multiplier �1+R� �cf. Eqs. �38� and �27��.

Thus the EDFC extends the domain of stability by shift-
ing both the lower threshold to the left and the upper thresh-
old to the right. Domains of stability in the plane of param-
eters �k ,R� are shown for two different periodic orbits in Fig.
8. We see that UPO with the parameters �� ,��= �0.25,0.3�

FIG. 7. Root loci of �a� Eq. �26� for �=1.00451 ��0=1� and �b�
Eq. �37� for the same � and R=0.5. Crosses and black dot denote
the location of the roots for k=0 and k=�, respectively.
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cannot be stabilized by the usual DFC. However its stabili-
zation is possible by the EDFC with the parameter R�0.46.

To obtain an approximate analytical expression for the
right-hand branch of FE we expand the solution of Eq. �37�
in Taylor series close to the threshold k=k1. As a result we
get a modified Eq. �28�

Re � =
�1 − R2�4�k1/�

�1 + R�4�2 + ��1 − R��2�k1/���2 �k − k1� , �39�

where k1 is defined by Eq. �38�.
The validity of analytical results obtained in this section is

demonstrated in Fig. 9. In Figs. 9�c� and 9�d� the leading
FE’s are presented for R=0.5 and the same values of param-
eters �� ,��= �0.9,0.6� as in Fig. 6. For small �=0.01 �Fig.
9�a��, Eqs. �32� and �36� give quantitatively correct results
for the left-hand branch, and Eq. �39� describes well the
right-hand branch. Even for �=0.1 �Fig. 9�b��, Eqs. �32� and
�39� are in good agreement with the results obtained from
exact variational equations, while Eq. �36� is less appropri-
ate.

Comparing Figs. 9�a�, 9�b�, 6�a�, and 6�c� we see that the
EDFC indeed extends the domain of stability. Another prop-
erty of the EDFC is that the optimal value of the control gain
kop is no longer determined by an intersection of the left-
hand and right-hand branches of FE’s, but by the minimum
of the left-hand branch. Differentiating Eq. �36� with respect
to k and equating the result to zero one can find an analytical
expression for the optimal value of the control gain

kop =
�2�1 − �A0�2/2�

��1 − R��
�1 +
1 +

�2

�1 − �A0�2/2�2� . �40�

As a last example in this section we consider a set of
parameters �� ,��= �0.25,0.3� for which the system possesses
three periodic orbits. We have shown that the smallest orbit
cannot be stabilized by the usual DFC �see Fig. 8�b��. We
now consider a possibility of its stabilization by the EDFC.
Figure 9�c� shows the left-hand branch of FE’s obtained from
transcendental Eq. �32� for different values of parameter R.
An optimal value of this parameter that provides the deepest
minimum in the dependence Re � vs k is R	0.7. In Fig.
9�c�, the predicted values of the FE’s are compared with the
values of the Laypunov exponents determined from the exact

linearized equations for R=0.7. We see that this UPO can be
stabilized with the UDFC provided the control gain is chosen
from the interval k0	k	k1.

V. NUMERICAL DEMONSTRATIONS

To verify the validity of the linear theory we have numeri-
cally investigated the original nonlinear differential equa-
tions �2�. For the set of parameter �� ,��= �0.6,0.9�, �=0.1
the results are presented in Fig. 10. Without control �t
	80T� the van der Pol oscillator is not synchronized with
the external force and a beat phenomenon is observed �Fig.
10�a��. The DFC perturbation is switched on at the moment
tc=80T; it stabilizes an unstable UPO and we have a periodic
motion synchronized with an external force �Fig. 10�b��.
Whenever the synchronization is established the feedback
perturbation vanishes �Fig. 10�c��. The envelopes of the tran-
sient are well described by the averaged amplitude equation
�8�. This confirms the validity of the averaging procedure
applied to the time-delay system �2�.

Figure 11 shows the dynamics of the system controlled by
the extended delayed feedback for the set of parameter
�� ,��= �0.25,0.3�, �=0.1, when the system possesses three
periodic orbits. The largest orbit with the amplitude �A0�
	2.12 is stable. It corresponds to the synchronized periodic
motion of the system that is observed without control for t

FIG. 8. Stability domains in the plane of parameters �k ,R� for
�=0.01. The lower threshold is obtained from Eq. �35� and the
upper threshold is determined from Eq. �38�. �a� �� ,��= �0.9,0.6�,
�b� �� ,��= �0.25,0.3�. The values of other parameters of the un-
stable orbits are presented in the captions of Figs. 6 and 9.

FIG. 9. Floquet exponents in the case of the EDFC. �a� and �b�
Same diagrams as �a� and �c� in Fig. 6 but for R=0.5. �c� and �d�
correspond to the set of parameters �=0.1, �� ,��= �0.25,0.3�, �
	1.01258, a	0.06075, �A0�	0.645, and �0	�3.96±1.23i�
�10−2. �c� Solution of transcendental Eq. �32� for different values
of parameter R: �1� R=0; �2� R=0.3; �3� R=0.5; �4� R=0.7; �5� R
=0.9. �d� Re � vs k dependence for R=0.7. Solid dots are the values
of the Lyapunov exponents obtained from exact variational equa-
tions �24� using replacement �29�. The dashed and dotted lines de-
termined, respectively, from Eq. �32� and Eq. �36� approximate the
left-hand branch. The solid lines in �a�, �b�, and �d� obtained from
Eq. �39� approximate the right-hand branches.
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	 tc=50T. The smallest orbit with the amplitude �A0�
	0.645 is unstable; its two complex conjugate FE’s are �0
	�3.96±1.23i��10−2. The EDFC switches the system from
synchronized motion with the large amplitude to another
synchronized motion with the small amplitude. Whenever
this new synchronization regime is established the feedback
perturbation vanishes.

VI. CONCLUSIONS

We have developed an analytical approach for the delayed
feedback control of a forced self-sustained oscillator close to
a supercritical Hopf bifurcation. The analytical approach is
based on an averaging method, a classical asymptotic
method of nonlinear dynamics developed for weakly nonlin-
ear oscillators. We have shown that this method works well
even in the presence of the delayed feedback.

Our analysis shows that the domain of synchronization of
a forced self-sustained oscillator can be essentially extended
by delayed feedback. This extension is based on the stabili-
zation of the existing unstable periodic orbit and is attained
with tiny control perturbations. The delayed feedback can be
also used to change the synchronization regime from peri-
odic oscillations with a large amplitude to periodic oscilla-
tions with a small amplitude.

In this paper, the delayed feedback control method is ap-
plied for the first time to control a quasiperiodic motion, i.e.,
the motion on a torus in the phase space. The unstable peri-
odic orbits in this case have a pair of complex conjugate
Floquet multipliers outside the unit circle in the complex
plane.

The analytical approach is demonstrated for the paradig-
matic model of the forced van der Pol oscillator. We have
obtained simple analytical expressions for the dependence of
leading Floquet exponents on the control gain and deter-
mined the lower and upper threshold of stability as well as an
optimal value of the control gain. We have also determined
analytical properties of the extended delayed feedback con-
troller. The main results and the approach are of general
importance since they are relevant to any forced self sus-
tained oscillator close to the supercritical Hopf bifurcation.
We believe that the developed analytical approach is an im-
portant contribution to the theory of the delayed feedback
control.

FIG. 10. Results of numerical integration of delay-differential
equations �2� for �� ,��= �0.9,0.6�, �=0.1. �a� Dynamics of the x
variable without control. �b� and �c� Dynamics of the x variable and
perturbation k�x�t�−x�t−T�� when the control is switched on. The
broken line �an envelope� in �b� is the dynamics of the complex
amplitude �A�t��=2�z�t�� obtained from averaged Eq. �8�. The
strength of the feedback gain is k=0.34; other parameters are the
same as in Fig. 6�c�.

FIG. 11. Results of numerical integration of delay-differential
equations �2� with the replacement �29� for �� ,��= �0.25,0.3�, �
=0.1, k=0.16, and R=0.7. Other parameters are presented in the
caption of Fig. 9. �a� Dynamics of the x variable. �b� Dynamics of
the control perturbation k�x− �1−R��T

x�. The control is switched on
at the moment tc=50T. The black regions are closely filled by
oscillations.
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